SUVCars.com News

🔒
❌ About FreshRSS
There are new available articles, click to refresh the page.
Before yesterdayRelated Blogs

These 7 Discontinued Cars Should Make a Comeback

By Matt Keegan

Some car models have tremendous staying power that’s measured in decades. Included in this elite group are picks such as the Toyota Corolla, Chevrolet Corvette and Volkswagen Golf. However, not all models are blessed with that kind of longevity. Listed below are some discontinued models we’d like to see make a comeback, including two expected … Continue reading These 7 Discontinued Cars Should Make a Comeback

The post These 7 Discontinued Cars Should Make a Comeback appeared first on Automotive News And Advice.

Nissan Z: An Automaker’s Commitment to Building a World-Class Sports Car

By Chris Brewer

In many cases, if a current vehicle has a long history, it must walk the line between market relevance and honoring tradition. Vehicles like Fiat’s recently launched 124 Spider are carefully designed to evoke memories of a bygone era in which the original Italian roadster of the same name dominated market sales. Other cars, like … Continue reading Nissan Z: An Automaker’s Commitment to Building a World-Class Sports Car

The post Nissan Z: An Automaker’s Commitment to Building a World-Class Sports Car appeared first on Automotive News And Advice.

A Quick Look at the Lingenfelter Collection

By Charles Krome

Ken Lingenfelter is an example of how the love of cars can run in a family. His father, Charles, was a plant executive for General Motors’ Fisher Body division in the 1960s, and he’d sometimes bring his son to the facility. This allowed Ken to get up close and personal with the cars being built … Continue reading A Quick Look at the Lingenfelter Collection

The post A Quick Look at the Lingenfelter Collection appeared first on Automotive News And Advice.

Preventing Automotive Problems Caused by Old Man Winter

By Gene Hannon

Gene Hannon: Preventing Automotive Problems Caused by Old Man Winter

Most of us have experienced driving in cold weather and our share of breakdowns. Usually a breakdown is due to the neglect of our vehicle; I’m just as guilty as the next guy. We’re busy people! Things we neglect that can cause us to have problems, especially in the winter months:

Battery
• Antifreeze
Engine oil
• Window washer fluid
• Wiper blades
• Tires

Here are 6 simple things we can do to help save us from a winter breakdown:

1. Load test the battery. Check and clean the battery connections.
2. Check the condition, strength, and level of the antifreeze. Replace if needed.

Coolant concentration check

Antifreeze concentration test.

3. Check the engine oil condition and level. Replace the engine oil and filter if needed.

Engine oil dipstick on Dodge truck.

Engine oil dipstick location on a Dodge truck.

Engine oil level check.

Checking the level of the engine oil on the dipstick.

4. Refill the window washer bottle and check the spray operation.

location of windshield washer bottle on vehicle

Windshield washer bottle.

5. Inspect and replace the wiper blades as needed.

Windshield wiper blades in cold weather

Check the condition of the windshield wiper blades.

6. Inspect the tires for tread wear and pressure; rotate if needed.

Tire tread wear check.

Check the tread of the tires for wear.

Checking the tire pressure with a tire pressure gauge.

Check the tire pressure.

 

Refer to Chilton’s online repair manuals to help keep your vehicle in top shape. Check out ChiltonDIY for repair procedures, maintenance intervals, wiring diagrams, technical service bulletins, Recalls, and more.

Coast to Coast: The History of Transcontinental Travel, Part 5: The Future of Travel

By Ryan Price

Undoubtedly, the transcontinental record posted last year will not stand for long, as there are probably teams of people right now plotting their strategy to traverse the country in less time. They will certainly achieve this with new routes, higher speeds, and/or better luck. Throughout the history of transcontinental travel, the limitations on closing the time gap was technology and the infrastructure: Wagons, trains, motorcycles, and cars traveled across everything from the barren wastelands of the Southwest to pristine asphalt freshly laid west.

The very nature of the automobile and railroad industry may change the environment of future attempts, as technology and the imagination of engineers and scientists endeavor to create safe, faster, and better travel. Autonomous vehicles, magnetic levitating (Maglev) bullet trains, and commercial airplanes complete with auto pilot, are the future. Imagine riding in a car that is capable of sensing its environment and navigating without human input; what’s more, imagine being surrounded by like vehicles. Perhaps the highways of the near future will be dominated by such cars and trucks that can run at high speeds for long durations in close formations, hampered neither by traffic, speed laws, or fuel constraints.

2016 Mercedes S Class autonomous features

2016 Mercedes S Class autonomous features

For example, the 2016 Mercedes S-Class has options for autonomous steering, lane maintaining functions, acceleration/braking, parking, accident avoidance, and driver fatigue detection, in both city traffic and highway speeds of up to 124 mph. With adaptive cruise control (monitors distances to adjacent vehicles in the same lane, adjusting the speed with the flow of traffic) it has the earmarks of a completely autonomous vehicle.

Google's autonomous vehicle

Google’s self-driving car project

Not to be outdone by Mercedes, Audi and BMW have done extensive research on self-driving cars, but nothing like what Google has been working on. Sebastian Thrun is head of Google’s Self-Driving Car project at Google X (its experimental branch). Working on legislation passed in four states and Washington D.C. to allow driverless cars, Thrun’s team, along with Toyota, modified a Prius with driverless technology. In May 2012, it was the first such car to obtain a license for an autonomous car.

By 2020, Google plans to offer its version of a driverless car (it has no pedals nor a steering wheel) to the public. As of September 2015, Google’s fleet of experimental prototypes have traveled nearly 1.3 million miles of public roads (with only 14 minor traffic accidents).

Highways of the Future

Smart Highway by Daan Roosegaarde

Smart Highway by Daan Roosegaarde

Imagine a highway not dotted with road signs or streetlights, but brightly lit and well annotated. The lines on the road itself glows, and the road signs appear on a monitor inside the cabin of your car (or not at all; the car’s computer knows where it is and where it is going so you don’t have to). Sounds a little far fetched, but right now there are about three miles of Highway N329 outside of Amsterdam that use glowing green paint to mark the lanes. Developed by Daan Roosegaarde, the paint glows indefinitely, and he has big ideas to make it able to change colors depending on road conditions.

Solar Roadways

Solar Roadways

In Sandpoint, Idaho, Solar Roadways, owned by Scott and Julie Brusaw, has developed interconnected road panels to form a “smart” highway. Harnessing the power everywhere there are roads, can power lights, signs, and even electric cars using the roads themselves. In addition to the potential to power nearby homes, businesses, and electric vehicles, the panels also have heating elements for convenient snow and ice removal, as well as LEDs that can make road signage.

Take the Train

Japan's high speed rail line

Japan’s high speed rail line

For years, countries like Japan and England/France have utilized high-speed rail in their countries. Japan’s Shinkansen line is the world’s busiest high-speed line, carrying nearly 151 million passengers a year between Tokyo and Osaka, while China’s high-speed system ferries over 370 million annually. Though they travel at approximately 150mph, this is by conventional railway trains (steel rails and a wheeled trains), but the future is Maglev train systems that travel on superconducting magnets that not only drive the train forward at incredible speeds but keep it planted on the tracks. In 2009, the Maglev Technological Practicality Evaluation Committee under the Japanese Ministry of Land, Infrastructure, Transport and Tourism deemed the SCMaglev system ready for commercial operation. In 2003, the Maglev train with three passenger cars (unoccupied) set the land speed record for railed vehicles at 361.0 mph. Completed systems will be online by 2027 in Japan, and at that rate, one could travel from New York to Los Angeles in 6.7 hours.

Beyond the Wheel

With cars communicating with each other along the highways, dangers ahead can be shared among the cars on the road. The speeds can increase, the distance between cars can decrease, and accidents can become nearly a thing of the past. As many automakers have shown, a computer is much quicker than any human in detecting a situation, deciding on what course of action to take, and taking that action. A deer crossing the road can be detected by a computer in pitch black darkness hundreds of feet away and a solution formatted long before the deer knows there’s a car approaching.

Production cars today are capable of sub-200 mph speeds; now imagine those speeds with the confidence of a well-engineered road and a computer at the helm, the time it would take to travel from New York to Los Angeles would be just over 12 hours.

The Transcontinental Record?

It is hard to say what the future holds, but one thing is clear: As long as there is a record on the books, someone, somewhere will try to break it. After all, when the first person set foot on this continent, negotiating a path to the other side was made impossible only by his or her own limitations.

The quickest way from the East to the West Coast was via Clipper ship around The Horn, taking about 150 days. By land, that time was nearly six months. Today, it is five hours by plane and, now, only 28 hours by car.

What will the record be in another 10 years? Twenty? And will it have been made by a human driving a car or a car driving the human? If it is the latter, will it still be a record?

Whether it’s coast to coast or just around town,  count on Chilton for vital data to keep your vehicle in top shape. Access your ChiltonDIY subscription for service and repair information, troubleshooting, and full-text technical service bulletins (TSBs) and Recalls.

Turbochargers – Pump It Up

By ChiltonDIY

By Jim Marotta

At 100 horsepower per liter, GM’s newer turbocharged 1.4L has the power of a larger engine but retains the efficiency of a small-displacement four-cylinder in most driving conditions.

At 100 horsepower per liter, GM’s newer turbocharged 1.4L has the power of a larger engine but retains the efficiency of a small-displacement four-cylinder in most driving conditions. Courtesy GM

 

A naturally aspirated automobile engine uses the downward stroke of a piston to create an area of low pressure in order to draw air into the cylinder through the intake valves. Because the pressure in the atmosphere is no more than 14.7 psi, there is a limit to the amount of airflow entering the combustion chamber.

A turbocharged engine uses a radial fan pump driven by the engine’s exhaust that consists of a turbine and a compressor on a shared shaft. The turbine converts exhaust gases exiting the engine into rotational force, which is used to drive a compressor which draws in ambient air and pumps it at high pressure into the intake manifold to improve the engine’s volumetric efficiency. This results in a greater mass of air entering the cylinders on each intake stroke.

There are four main components to a turbocharger: the housing, the impeller/turbine wheels, the center hub and the bypass.

The size and shape of the housings fitted around the impeller and turbine dictate the performance characteristics of the overall turbocharger. This allows the designer of the engine system to tailor the compromises between performance, response, and efficiency to application or preference.

The size and shape of the housings fitted around the impeller and turbine affect performance,  response, and efficiency. Courtesy Borg-Warner

 

The size and shape of the housings fitted around the impeller and turbine dictate the performance characteristics of the overall turbocharger. This allows the designer of the engine system to tailor the compromises between performance, response, and efficiency to application or preference.

The impeller and turbine wheel sizes also dictate the amount of air or exhaust that can be flowed through the system. Generally, the larger the turbine and compressor wheels, the larger the flow capacity. The shape, curvature and number of blades on the wheels allow infinite variability in design to tailor a turbocharger to a given engine.

Water-cooled turbocharger center hub bearing

Water-cooled bearings, such as the one shown, allow engine coolant to keep the lubricating oil cooler, avoiding possible oil coking from the extreme heat found in the turbine. Courtesy Borg-Warner

 

The center hub connects the compressor impeller and turbine and uses a bearing lubricated by a constant supply of pressurized engine oil. While the engine oil cools some systems, the preferred method is to use engine coolant to keep the lubricating oil cooler, avoiding possible oil coking from the extreme heat found in the turbine.

Turbos use a bypass or wastegate to prevent over-pressurizing the system. At a specific boost pressure, a bypass feeds part of the exhaust gas flow around the turbine. The wastegate which opens or closes the bypass is usually operated by a spring-loaded diaphragm in response to the boost pressure.

There are several tips to maintaining and servicing turbochargers:

  • Engineers design turbochargers to last the lifetime of the engine. They normally do not require any special maintenance; however observe strict adherence to the engine manufacturer’s service instructions. Ninety percent of all turbocharger failures are due to either foreign bodies entering into the turbine or the compressor, dirt in the oil, inadequate oil supply, or high exhaust gas temperatures.
  • The most important maintenance factor is clean oil. Since turbochargers can be easily damaged by dirty or ineffective oil, most manufacturers recommend more frequent oil changes for turbocharged engines. The use of synthetic oils, which tend to flow more readily when cold and do not break down as quickly as conventional oils, is also a common practice.
  • Since the turbocharger generates heat when running, many automakers recommend letting the engine idle before shutting off the engine if the turbocharger was used shortly before stopping. Most manufacturers specify a 10-second period of idling before switching off, for a couple of reasons: (1) to ensure the turbocharger is running at its idle speed, and (2) to prevent damage to the bearings when the oil supply is cut off. Idling lets the turbo rotating assembly cool from the lower exhaust gas temperatures, and ensures that oil is supplied to the turbocharger while the turbine housing and exhaust manifold are still very hot; otherwise coking of the lubricating oil trapped in the unit may occur when the heat soaks into the bearings, causing rapid bearing wear and failure when the car is restarted. Even small particles of burnt oil will accumulate, lead to choking the oil supply, and failure.
  • The easiest way to diagnose a weak turbocharger is to observe the turbo boost. If the turbocharger does not show normal boost at full throttle (typically 9 to 14 psi), the system needs further diagnosis. One common but overlooked condition is excessive exhaust backpressure (often due to a clogged catalytic converter) which can prevent the turbo from developing its normal boost pressure.

Planning to service or repair your vehicle? Chilton can help! Access procedures, specifications, tips, and more at http://www.ChiltonDIY.com/.

James Marotta A muscle car enthusiast and drag racer, Jim Marotta is a freelance automotive writer with more than 20 years experience in the automotive industry.

How to Refill the Coolant without a Bleed Tool

By Gene Hannon

Vehicle high temperature indicator light

Draining and refilling the coolant is one of the easier maintenance tasks you can do on most vehicles. In addition to saving money, doing your own maintenance is a way to monitor the health of your vehicle.

Why Perform a Regular Coolant Flush and Refill?

Coolant loses effectiveness over time, so it’s important to periodically drain and refill the cooling system. In addition, as coolant becomes dirty, and rust and particles can eventually degrade cooling system components, such as the engine and water pump.

Bleeding Air from the Cooling System

If you drain the system and then pour coolant in, there is still air trapped within the hoses and components that hold coolant. That air must be removed. You’ll need to bleed out the air and then top off the coolant to the proper level.
Some car manufacturer refill procedures use a special tool that automatically fills the cooling system and bleeds any excess air. In most cases, if you don’t have the special tool, you can still fill the cooling system and bleed it manually. In rare cases, vehicles need to be serviced with specialized cooling system equipment, due to the complexity of the cooling system. Air will become trapped in the cooling system, and cause the engine to overheat! Check the service information before you attempt the procedure.

Check the service information before you attempt the procedure.

Research the vehicle’s cooling system.

How to Refill the Coolant System Manually

Caution
Do not work on the coolant system when the system is hot and under pressure: Coolant can cause serious burns. Do not remove the radiator cap, cylinder block drain plugs, or loosen the radiator draincock, when the engine is hot.

1. Tighten the radiator draincock.

Tighten the radiator draincock before filling the cooling system.

Tighten the radiator draincock. 2010 Chevrolet HHR shown. Image: General Motors

2. Tighten the cylinder block drain plug(s).

2010 Chevrolet HHR cylinder block drain plug location.

Tighten the engine block drain plug. 2010 Chevrolet HRR shown. Image: General Motors.

3. Fill the cooling system with the manufacturer-specified antifreeze. You can find the correct specification in your Chilton DIY subscription or in your owner’s manual. Because specifications change occasionally, such as with new technology, it’s a good idea to check the technical service bulletins in your ChiltonDIY subscription too.
4. Fill the radiator to the top and install the radiator cap. Add sufficient coolant to the overflow tank to raise the level to the FULL mark. Check your Chilton DIY specifications or the owner’s manual for the coolant amount including the overflow tank.

2010 Chevrolet HHR radiator cap location

Fill the radiator to the top and install the radiator cap. 2010 Chevrolet HHR shown. Image: General Motors.

5. Run the engine with both the radiator cap and reservoir/overflow tank cap in place. Turn on the heat with the blower on high. When the engine reaches normal operating temperature, shut the engine off and allow it to cool.
6. Top off the coolant level to the reserve/overflow tank as necessary to bring it to the FULL mark. Only add coolant when the engine is cold. The coolant level in a warm engine will be higher due to thermal expansion – that is, hot coolant expands and so the coolant level will appear to be higher.
7. Repeat the procedure and recheck the cooling system level.

❌